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Abstract—Classification of ECG signals is of great importance
for the detection of cardiac dysfunction. Recurrent Neural
Network family has been greatly successful for time series
related problems. In this paper, we compare different RNN
variants and propose dot Residual LSTM network for ECG
classification. Here, we use extracted features both from time
and frequency domain with the network to improve the classi-
fication performance. A data generation scheme was developed
with Conditional variational autoencoder (CVAE) and LSTM to
increase training samples. A comparative analysis was studied
to assess the performance of the model. The proposed dot Res
LSTM achieved maximum accuracy of 80.00% and F1 score of
0.85. Furthermore, the model achieved maximum F1 score of
0.87 with augmented data. The study is expected to be useful in
automatic cardiac diagnosis research.

Index Terms—RNN, LSTM, ECG Classification, CVAE, Data
Augmentation

I. INTRODUCTION

There are a lot of approaches that have been taken to
analyze anomalous behavior of ECG and EEG signals. Recur-
rent Neural Network family has been extensively successful
for bio-signal classification in recent times. In [1] authors
used a stacked LSTM network to detect the deviation from
normal behavior of a time series where the predictor was used
to model the non-anomalous data and prediction error was
used to indicate the abnormality of the time series. Authors
approached a model combining Convolutional Neural Network
(CNN) and LSTM networks that had the ability to learn the
sequences of long-term pattern of unknown length in [2].
The model can predict the temporal sequences of cardiac
arrhythmia. Researchers proposed a predictive model using
Deep Recurrent Neural Network with LSTM in [3] where
the probability distribution of the prediction error identified
the normal and abnormal behavior of ECG signals. In [4]
authors compared Deep Convolutional Neural Network (CNN)
with a network combining convolutional layers and LSTM
layers. The second architecture showed better performance
than first one where training set was based on ECG data and
testing data worked as an evaluation of effectiveness in the

AF classifications. Authors proposed a Deep Neural Network
based model combining auto encoder and LSTM in [5] where
the model learned the ECG waveâs shape with the temporal
sequences to evaluate the detection accuracy of abnormal
waves. Data augmentation has been very successful in medical
image and bio-signal processing domain [6]–[8]. Researchers
evaluated the performances of image recognition with the
shallow and deep computational models before and after data
augmentation in [9]. The experimental results showed that
the data augmentation is an effective way for the recognition
process for limited datasets of EEG.

II. METHODOLOGY

Recurrent Neural Network family has been extensively
successful for time series classification in recent times [10]–
[12]. In this work, we have tried to optimize the performance
by proposing dot Res LSTM network. Augmented data was
generated using c-VAE, and LSTM models to increase data
samples. The dot Res LSTM model was trained with both the
ECG signals and the extracted features to improve classifica-
tion scheme. The overall methodology of the study has been
presented in Figure 1.

Fig. 1: Overall methodology
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A. Dataset and Pre-processing

The ECG signals were collected from MIT-BIH Arrhythmia
database [13]. The ECG signals were from multiple patients
(19 female (age: 23-89) and 26 male (age: 32-89)). The ECG
signals contained 17 classes: normal sinus rhythm, pacemaker
rhythm, and 15 types of cardiac dysfunctions which were later
split into two classes for binary classification. For the analysis,
1000, 10-second (3600 samples) fragments derived from one
lead, the MLII, (not overlapping) were randomly selected.
The ECG signals were downsampled to 905 sample points by
applying multi-level wavelet transformation with ’db4’ wavelet
at level 2. Only the approximation coefficients were used for
training.

Fig. 2: ECG signals from dataset

Data scarcity is a big constraint when working with biosig-
nals. There are many approaches to solve the data limitation
problem [6], [14]–[17]. Data augmentation methods can be
applied to generate new instances to increase training samples
to train a better generalized model. We have used a CVAE
and LSTM model to generate new ECG instances to increase
training set variance.

B. CVAE and LSTM Generator

Lets consider an ECG dataset E = {x(i)}Ki=1 with K
samples. We make a simplified assumption that the ECG data
are generated from a random process. From a prior distribution
pθ(z), a latent variable z is drawn and from conditional distri-
bution pθ(x|z), we can draw a sample x, where both pθ(z) and
pθ(x|z) are parameterized by theta. In, variational autoencoder
there is a encoder-decoder architecture. The encoder maps the
variable x to the approximated posterior distribution p∗θ(z|x)
and the decoder maps the latent variable z to the conditional
distribution pθ(x|z) [18], [19].

CVAE is trained so that the conditional log likelihood of x
given c is maximized. The efficient training with the Stochastic
Gradient Variational Bayes (SGVB) involves maximizing the
variational lower bound of the conditional log likelihood [20].
Figure 2 demonstrates an overview of the data generation
process of the VAE, in CVAE we also pass the label to the
encoder to generate samples from multiple classes.

Fig. 3: VAE Data Generation

Fig. 4: Training of CVAE Generator

We have designed a simplified LSTM regression model
which takes 100 samples and predicts the next 805 sample
points. It consists of 2 LSTM layers, with ReLU activation.
The final layer is a fully connected layer with linear activation.
But, the model is limited to generate samples for only one
class.

C. Model Architecture

In our model, we have incorporated the manually designed
features with automatic feature learning. The learnable param-
eters are distributed to capture the data representation better.
The features used in this experiment are: absolute energy,



Fig. 5: Architecture of dot Res LSTM

spectral moment 2, LOG, WL, autocorrelation, binned entropy,
sample entropy, AAC, time reversal asymmetry statistic, vari-
ance.

Features from both time and frequency domain were used
for the network. 10 features were calculated from ECG signals
and fed to dot Res LSTM model. List of features [21] with
mathematical definitions are listed below:
Absolute Energy is the sum of squared values.

E =

n∑
i=1

x2
i (1)

Spectral Moments(SM2) is a statistical approach to extract

Fig. 6: Step Decay Learning Rate

power spectrum of ECG singal and it is defined as:

SM2 =

n∑
i=1

Pif
2
i (2)

Waveform Length (WL) is used to measure the complexity of
ECG signal and is defined as:

WL =

n−1∑
i=1

|xi+1 − xi| (3)

Binned Entropy(BE) is calculated as:

BE = −
min(max bins,len(x))∑

k=0

Pklog(pk).where, pk > 0 (4)

Average amplitude change (AAC) is formulated as

ACC =
1

N

N−1∑
i=1

|xi+1 − xi| (5)

Variance is the measure of how far a random variable is spread
out and Time Reversal Asymmetry Statistic (TRAS) is

TRAS =
1

n− 2lag

n−2lag∑
i=0

x2
i+2lag.xi+lag − xi+lag.x

2 (6)

The model was shown both the signals and the features
while training. We used he normal for initializing the kernels.
Both L1 and L2 regularization was used. For LSTM layers,
we used L2 regularization and for FC layers L1 regularization
was used. To minimize the number of parameters in the
network, we used multiple dot layers. These dot layers can
be considered as non-learnable similarity gates which can mix
features from two branches in the network [22], [23]. The
network is also inspired by [24]. The residual connections are
used to solve the vanishing gradient problem. The architecture
of the proposed dot Res LSTM is shown in Figure 4. The
model was trained with cross entropy loss and adam optimizer
for 30 epochs. We used step decay learning rate which is
shown in Figure 5.



TABLE I: Performance Comparison
Model Accuracy Precision Recall F1 Parameters
LSTM 0.73 0.73 0.95 0.82 50,050
Bidir. LSTM 0.73 0.72 0.96 0.82 52,322
GRU 0.71 0.70 0.98 0.82 37,570
dot Res LSTM 0.80 0.82 0.89 0.85 50,871
dot Res LSTM 0.78 0.77 0.98 0.87 50,871
+ aug. data

III. RESULT ANALYSIS

In this work, we compared multiple RNN types with our
model. We were able to achieve better classification per-
formance while keeping the number of parameters of the
proposed network almost same. The proposed dot Res LSTM
outperformed other models which is shown in Table 1. The
CVAE was used to generate ECG samples for two classes. The
training loss is shown in Figure. In the early epochs, the model
showed overfitting but eventually, converged with reasonable
validation loss.

In the evaluation of the performance of the model, accuracy
has been used as the preliminary parameter. Accuracy is
defined as the proportion of the correct outputs that a classifier
achieved. Through accuracy, we get an estimate of the correct
predictions made by the model over all kinds of the predictions
made.

Accuracy =
TP + TN

TP + TN + FN + FP
(7)

Accuracy is a good metric when there are balanced data of
two or multiple classes. But as the dataset is imbalanced, it
is not reliable for performance evaluations. Again, accuracy
considers only the correct results, does not take the incorrect
results into account. It is more convenient to consider all the
correct and incorrect predictions made by the model in the
performance evaluation.So, we would like to allow the F1
score in our consideration. F1 score is defined as the weighted
average of precision and recall which takes both false positive
and false negative into account.

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(10)

True Positive (TP): When the ECG signal had anomaly
and the model predicted it.

True Negative (TN): When the ECG signal had no anomaly
and the model predicted it.

False Positive (FP): When the ECG signal had no anomaly
but the model predicted that the signal had an anomaly.

False Negative (FN): When the ECG signal had anomaly
but the model predicted that the signal had no anomaly.

Here, precision is the number of correct positive results
over the positive prediction made by the model and Recall

is the number of correct positive results over the number of
all samples that should have been predicted as positive. A
model in which the difference between the actual values and
the predicted values is relatively small and unbiased for the
training set, validation set, and testing set would be a good
fitting model. We have evaluated the performance of our model
through accuracy, precision, recall, and F1 score.

The embedding plot of the CVAE encoder is shown in Fig-
ure 6. It turned out to be challenging to generate distinguising
samples which can be realized from the correlated plot. As
a result, the performance slightly dropped after introducing
samples generated by CVAE. But, it had some regularization
effect which resulted in a better test F1 score.

Fig. 7: Embedding plot of CVAE Encoder (training, testing)

From the training curve of Figure 7 it is evident that the model
is highly regularized. The model was trained with crossentropy
loss. We used adam optimizer with step decay learning rate.
Initally, 800 samples were used for training and 200 samples
were kept for testing. 15% data from training split was used for
validation purpose. Additional 800 samples were generated by
CVAE, but only 50 samples were used with training set. For all
of the RNN variants, we used two recurrent layer followed by
one fully connected layer with softmax activation. Overall, the
dot Res LSTM model showed better performance than other
RNN variants with limited training examples.

Fig. 8: Training of dot Res LSTM

IV. CONCLUSION

In this paper, we proposed dot Residual LSTM Network for
classifying ECG signals and found that this method performs
better in classification task with reduced number of parameters
than other RNN variants. The main contribution of this work
is that, we tried to find a method which uses both handcrafted
features and learnt features in a single network to better
generalize the classification task. We also experimented with



data augmentation and synthetic data generation process with
CVAE which improved the F1 score of the model. dot Residual
LSTM showed better generalization with few trainable pa-
rameters as the hyper-parameters were chosen very carefully
to train the network. We intend to improve the modelâs
performance by adding more robust data generation scheme,
and introducing knowledge distillation to further reduce the
number of parameters, which will be an important aspect of
real time automatic cardiac diagnosis.
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