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Abstract— Parkinson's Disease (PD) impacts millions globally, 
causing debilitating motor symptoms. While Closed-Loop Deep 
Brain Stimulation (CL-DBS) has emerged as a promising 
treatment, existing systems often suffer from high energy 
consumption, making them impractical for wearable or 
implantable devices. This research introduces an innovative 
neuromorphic approach to enhance CL-DBS performance, 
utilizing Leaky Integrate-and-Fire (LIF) neuron-based 
controllers to adaptively modulate stimulation signals based on 
symptom severity. Two controllers, the on-off LIF and dual LIF 
models, are proposed, achieving significant reductions in power 
consumption by 19% and 56%, respectively, while enhancing 
suppression efficiency by 4.7% and 6.77%. Additionally, this 
work addresses the scarcity of datasets for PD symptoms by 
developing a novel dataset featuring neural activity from the 
subthalamic nucleus (STN), incorporating beta oscillations as 
key physiological biomarkers. This dataset aims to support 
further advancements in neuromorphic CL-DBS systems and is 
openly shared with the research community. By combining 
energy-efficient neuromorphic controllers with a 
comprehensive dataset, this study not only advances the 
technological feasibility of CL-DBS systems for PD treatment 
but also provides a foundation for personalized and adaptive 
neuromodulation therapies, paving the way for improved 
quality of life for individuals with Parkinson's Disease.

Keywords— Parkinson’s Disease, Closed-Loop Deep Brain 
Stimulation, Neuromorphic Computing, Energy-Efficient 
Controllers, Leaky Integrate and Fire Neuron Model 

I. INTRODUCTION

Parkinson’s Disease (PD) affects millions of individuals 
globally each year, posing significant challenges in both 
diagnosis and management [1]. Although pharmaceutical 
treatments are commonly employed to alleviate PD 
symptoms, their long-term efficacy declines due to the 
development of drug resistance. Consequently, patients in 
advanced stages often require higher doses, which can result 
in adverse effects such as depression, gait, and movement 
impairments [1]. Deep Brain Stimulation (DBS) has emerged 
as a promising therapeutic alternative, offering symptom 
relief through continuous electrical pulses delivered via 
electrodes implanted in the brain. These electrodes are 
surgically placed through small cranial openings, while the 

stimulation signals are generated and modulated by a device 
implanted in the patient’s chest. 

However, traditional DBS systems deliver fixed 
stimulation patterns regardless of the patient’s clinical state, 
often leading to unwanted side effects. Additionally, the 
constant nature of these stimulation signals accelerates 
battery depletion, necessitating frequent surgical 
interventions for device replacement [2]. To address these 
limitations, the Closed-Loop DBS (CL-DBS) system has 
been proposed. This advanced system optimizes stimulation 
by tailoring it to the patient’s specific symptoms, leveraging 
physiological biomarkers such as beta oscillations (13–30 
Hz) in the subthalamic nucleus (STN) for real-time 
adjustments. Despite the promise of CL-DBS in improving 
and therapeutic outcomes, its adoption is hindered by 
significant challenges, particularly in terms of power 
consumption [3, 4]. Unlike traditional open-loop DBS (OL-
DBS) systems, which deliver continuous or pre-programmed 
stimulation, CL-DBS requires real-time monitoring and 
dynamic adjustment of stimulation parameters based on 
physiological signals. This functionality involves continuous 
neural signal processing and rapid computational feedback 
loops, resulting in substantially higher energy demands. 
Current implementations of CL-DBS systems rely on 
sophisticated yet computationally intensive algorithms and 
hardware platforms, such as reinforcement learning [2, 5], 
fuzzy inference systems [6], field-programmable gate arrays 
(FPGAs) [2], and Artificial Neural Networks (ANNs) [7]. 
While these approaches enhance the precision and 
adaptability of the stimulation, their energy inefficiency 
limits their feasibility for use in implanted medical devices. 
Addressing this critical issue is essential for realizing the full 
potential of CL-DBS systems in clinical applications. 

This paper presents a novel neuromorphic closed-loop 
deep brain stimulation (CL-DBS) system that employs the 
Leaky Integrate-and-Fire (LIF) neuron model as a dynamic 
controller for stimulation signals. To meet the growing data 
requirements of neuromorphic methodologies, we have also 
developed a specialized Parkinson’s disease dataset, which 
includes both raw neural activity and beta-band oscillations 
from the subthalamic nucleus (STN). The key contributions 
of our work are summarized as follows: 
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1) Development of a Comprehensive Parkinson’s 
Disease Dataset: We constructed a computationally 
modeled dataset featuring beta oscillation signals 
from the STN and the Globus Pallidus internus (GPi). 
These signals serve as critical electrophysiological 
biomarkers for Parkinson’s disease, enabling more 
effective neuromorphic system designs. 

2) Design and Implementation of LIF-Based 
Neuromorphic Controllers: We propose and 
implement several LIF-based controllers for the 
neuromorphic CL-DBS system, designed to 
dynamically regulate the amplitude of DBS 
stimulation signals. Our novel controllers namely, the 
on-off LIF controller and the dual LIF controller 
demonstrate significant advancements in 
performance. Specifically, on-off LIF controller 
achieves a 19% reduction in power consumption, 
while enhancing suppression efficiency by 4.7%, and 
dual LIF controller achieves a 56% reduction in 
power consumption, with a corresponding 
improvement in suppression efficiency of 6.77%. 

II. CONCEPTS AND ADVANCES IN CLOSED-LOOP DEEP BRAIN 
STIMULATION FOR PARKINSON’S DISEASE 

The traditional Deep Brain Stimulation (DBS) systems, as 
illustrated in Figure 1 (a), utilize fixed electric square 
waveform pulses to target specific brain regions, particularly 
the basal ganglia, to alleviate motor symptoms in Parkinson’s 
disease (PD) patients. The basal ganglia, a critical part of the 
motor control circuitry, contains key structures like the 
subthalamic nucleus (STN) and globus pallidus internus 
(GPi) that are primary targets for DBS. These systems 
typically involve implanting electrodes into these brain 
regions, which are connected to an implantable pulse 
generator (IPG) via an insulated wire threaded beneath the 
patient’s skin and placed subcutaneously, often in the upper 
chest. This arrangement allows for continuous stimulation 
aimed at treating various movement disorders, such as 
Parkinson’s disease, dystonia, and essential tremors [8]. 

 
Figure 1: (a) Open-Loop DBS; (b) Closed-Loop DBS. 

Conventional DBS systems function in a one-directional, 
open-loop (OL) configuration, delivering continuous 
stimulation based on predefined parameters without 
considering the patient's real-time physiological state or 
variations in symptom severity. While this approach has been 
effective in reducing PD symptoms, it presents notable 
drawbacks, including excessive battery consumption and the 

potential for adverse side effects due to unregulated 
stimulation [9-14]. Since the system operates without 
dynamic feedback, it lacks the ability to tailor stimulation 
parameters in response to changes in the patient’s 
neurological state, limiting its therapeutic efficacy and energy 
efficiency. 

To overcome the limitations of OL-DBS systems, a novel 
concept known as closed-loop DBS (CL-DBS) has been 
introduced. Unlike its predecessor, CL-DBS incorporates a 
real-time feedback mechanism that continuously monitors 
physiological signals or biomarkers from the brain, enabling 
dynamic adjustments to stimulation parameters. Figure 1 
illustrates the key differences between OL-DBS and CL-
DBS. This adaptive framework ensures that DBS therapy can 
respond to changes in neural activity or symptom severity, 
thereby improving overall treatment effectiveness. The CL-
DBS system’s ability to automatically modify stimulation 
parameters without user intervention represents a substantial 
advancement in personalized treatment, offering the potential 
for more precise symptom management. 

III. BUILDING DATASET OF PARKINSON’S DISEASE USING A 
COMPUTATIONAL MODEL 

The data scarcity poses a severe issue for the 
neuromorphic community when applying Spiking Neural 
Networks (SNNs) and neuromorphic algorithms to medical 
applications. To address this challenge, we are building a 
novel dataset of PD biomarkers using a computational model 
[15]. 

 
Figure 2: Diagram of Closed-loop DBS System: (A) Network 
diagram of cortical basal ganglia neuron populations; (B) 
Diagram of the closed-loop stimulator [15]. 

The computational model for building the PD dataset is 
illustrated in Figure 2. The computation model consists of an 
extracellular DBS electric field and simulation of the local 
field potentials (LFP) at STN that is formed between the 
cortex, basal ganglia, and thalamus [16]. 

The data is generated from the cortico-basal ganglia 
computational model, represented as raw local field 
potentials (LFP) [15]. Local Field Potential refers to the 
electrical activity recorded from a small group of neurons in 
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the brain. Unlike single-neuron recordings, which focus on 
the activity of individual neurons, LFP recordings capture the 
combined activity of nearby neurons. LFP recordings are 
usually obtained using electrodes implanted in the brain 
tissue. In the computational model used for building the PD 
dataset, these electrodes detect the electrical fluctuations 
generated by the synchronized activity of a population of 
neurons between the cortex, STN, and thalamus. 

The main components of the model are interneurons and 
cortical neurons of the cortex, STN, globus pallidus externa 
(GPe), globus pallidus interna (GPi), and thalamus neurons. 
Cortical pyramidal neurons are simulated using conductance-
based biophysical models enabling extracellular DBS electric 
field to cortical axons. AMPA and GABA imply excitatory 
synapses and inhibitory synapses respectively. A total of six 
hundred STN, GPe, GPi, thalamic, cortical interneuron, and 
cortical pyramidal neurons are connected through these 
excitatory and inhibitory synapses which are illustrated in 
Figure 3. The connectivity pattern between neurons in the 
cortico-basal ganglia network is random. Each of the STN 
neurons receives 5 inhibitory inputs from GPe neurons and 
excitatory inputs from five cortical neurons [17]. Each globus 
pallidus externus (GPe) neuron is subjected to inhibitory 
input from one striatal neuron and one other GPe neuron 
while receiving excitatory input from two subthalamic 
nucleus (STN) neurons. Conversely, each globus pallidus 
internus (GPi) neuron receives excitatory input from a single 
STN neuron and inhibitory input from a single GPe neuron. 
Thalamic neurons encounter inhibitory input from a GPi 
neuron. Cortical neurons are stimulated by excitatory input 
from one thalamic neuron and concurrently inhibited by input 
from ten interneurons. In turn, interneurons are activated by 
excitatory input from ten cortical neurons [18]. 

 
Figure 3: Diagram of cortical basal ganglia network. 

The cortex is comprised of interneurons and cortical 
pyramidal neurons. The cortical neuron model consists of 
soma, axon initial segment (AIS), main axon, and axon 
collateral. These cortical neuron soma and interneuron 
models are generated based on regular spiking models. 
Subthalamic Nucleus includes a leak, sodium, three 
potassium, two calcium ionic currents, and an intracellular 
bias current for setting the neuron firing rate. STN plays a 
vital role in generating bursting activity during Parkinson’s 
disease. 

The models for both globus pallidus externus (GPe) and 
internus (GPi) neurons consist of leak, sodium, two 
potassium, and two calcium ionic currents, alongside an 
intracellular bias current that regulates the neuron firing rates. 

In the case of GPe neurons, an additional intracellular current 
is introduced to replicate DBS application, with the 
assumption that a proportionate number of GPe neurons are 
stimulated as compared to extracellularly stimulated cortical 
neurons during DBS. Thalamic neurons are also modeled 
similarly, though one calcium and one potassium current are 
excluded. The synaptic input from the striatum to GPe 
neurons is modeled as a collection of Poisson-distributed 
spike trains operating at a frequency of 3 Hz. The acquired 
raw LFP is shown in the following Figure 4. 

 

 

Figure 4: Raw local field potential generated from the neuron 
population between cortex, STN, and thalamus.  

These raw signals of LFP are recorded by the contact 
electrodes 1 and 2, which are shown in Figure 2. This is 
estimated as the summation of the extracellular potentials due 
to the spatially distributed synaptic currents across the STN 
population. A bandpass filter is applied to acquire the beta-
band filtered LFP.  

 
Figure 5: Beta Average Rectified Signal. 
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The average rectified value (ARV) of the beta-band LFP 
is calculated by full-wave rectifying the filtered LFP signal 
using a fourth-order Chebyshev band-pass filter with an 8 Hz 
bandwidth, centered about the peak in the LFP power 
spectrum. The acquired Beta Average rectified signal (ARV) 
can be seen in Figure 5. 

IV. LEAKY INTEGRATE-AND-FIRE NEURON CONTROLLER 
DESIGN FOR A NEUROMORPHIC CLOSED-LOOP DEEP BRAIN 

STIMULATION SYSTEM. 
Two neuromorphic controllers, designed specifically for 

Closed-Loop Deep Brain Stimulation (CL-DBS) systems, are 
proposed based on the Leaky Integrate-and-Fire (LIF) neuron 
model. These controllers, named the on-off LIF and dual-
threshold LIF controllers, aim to regulate the power density 
of beta oscillations in the subthalamic nucleus (STN) by 
adjusting the input DBS currents to achieve a defined target 
value. The LIF neuron models provide the foundation for 
implementing these controllers. The on-off LIF controller 
operates by comparing the Beta Average Rectified Value 
(ARV) to a predefined target and modulating the DBS current 
accordingly. The DBS current ranges between a minimum of 
0 mA and a maximum of 3 mA. When the Beta ARV exceeds 
the target, the DBS current (IDBS) increases, but it remains 
constant when the Beta ARV is below the target. Within the 
LIF model, when the membrane potential surpasses the 
threshold voltage (Vth), the neuron fires, resetting the 
membrane potential to Vleak. The Beta ARV is compared 
against the membrane potential, and the target value is 
compared to the threshold voltage. Adjustments to the DBS 
current are based on the following equations: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  
�−�𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� + 𝐴𝐴𝑅𝑅�

𝜏𝜏𝑚𝑚
, (1) 

𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

/𝐴𝐴, (2) 

where 𝜏𝜏𝑚𝑚  is the membrane time constant, R is the membrane 
resistance, and 𝑅𝑅(𝐵𝐵) represent the input current to the neuron. 
The specific parameters for the on-off LIF controller are 
listed in Table 1. 

Table 1: Parameters of On-Off LIF DBS Controller 

𝑽𝑽𝒎𝒎(𝒕𝒕) 𝑽𝑽𝒕𝒕𝒕𝒕 𝝉𝝉𝒎𝒎 R 𝑰𝑰 𝒃𝒃𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 

Measured 
Beta ARV 𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 5 0.5 Ω 5 mA 0.104 µV 

When the Beta ARV remains below the target, the DBS 
current does not change. The simulation results are shown in 
Figure 6. Beta oscillations were derived from raw Local Field 
Potential (LFP) data, and the Beta ARV was calculated by 
rectifying the filtered LFP signal with a fourth-order 
Chebyshev band-pass filter, centered on an 8 Hz bandwidth 
at the peak of the LFP power spectrum. Between 11 and 12 
seconds, the DBS current remains constant, as the Beta ARV 
is below the target. Before 11 seconds, the Beta ARV exceeds 
the target, causing an upward adjustment in the DBS current. 

The DBS current remains within the defined limits of 0 mA 
and 3 mA. 

The dual-threshold LIF controller uses the same 
governing equations (Eq. 1 and Eq. 2) as the on-off model but 
introduces two distinct target thresholds for more precise 
control. The upper target is set at 0.104 µV, and the lower 
target is 0.05207 µV, as shown in Table 2. If the Beta ARV 
exceeds the upper target, the DBS current increases. 
Conversely, when the Beta ARV falls below the lower target, 
the DBS current decreases. If the Beta ARV lies between the 
two thresholds, the DBS current remains unchanged. Figure 
7 demonstrates the output behavior of the dual-threshold LIF 
controller. 

 
Figure 6: Adaptive DBS current of on-off LIF controller. 

Table 2: Parameters of Dual LIF DBS Controller 

𝑽𝑽𝒎𝒎(𝒕𝒕) 𝑽𝑽𝒕𝒕𝒕𝒕 𝝉𝝉𝒎𝒎 R 𝑰𝑰 Targets (µV) 

Measured 
Beta ARV 

Targets 5 0.5 Ω 5 mA 𝐵𝐵𝑢𝑢𝑢𝑢= 0.104 

𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙= 0.05207 

The performance of these LIF-based neuromorphic 
controllers is evaluated based on three essential parameters: 
mean squared error (MSE), power consumption, and 
suppression efficiency. Each parameter is critical in 
determining the overall effectiveness and feasibility of the 
controllers, especially for applications requiring precision 
and energy efficiency. 

The mean squared error (MSE) quantifies the controllers' 
ability to maintain the target beta level, providing a numerical 
measure of accuracy. The MSE is calculated using the 
following equations: 

𝐵𝐵(𝐵𝐵) =  
𝑏𝑏𝑚𝑚𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑚𝑚 − 𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
(3) 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑇𝑇𝑚𝑚𝑠𝑠𝑚𝑚

� 𝐵𝐵(𝐵𝐵)2
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠

0
𝑑𝑑𝐵𝐵, (4) 

where 𝑇𝑇𝑚𝑚𝑠𝑠𝑚𝑚  represents the simulation duration, set at 30 
seconds. The term 𝐵𝐵(𝐵𝐵) refers to the normalized error signal 
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calculated as the difference between the measured beta ARV 
and the target beta ARV, normalized by the target beta ARV. 
MSE values for all controllers are benchmarked against the 
baseline error observed when DBS is deactivated. This 
baseline serves as a point of comparison to highlight the 
improvements achieved by each controller.  

 

Figure 7: Adaptive DBS current of dual LIF controller. 

Figure 8 illustrates the MSE for different CL-DBS 
controllers, including the open-loop, on-off LIF, and dual LIF 
controllers.  

 
Figure 8: Comparison of mean squared error (MSE) among 
different CL- DBS controllers. 

In the absence of DBS stimulation, the beta ARV signal 
reflects unregulated pathological beta activity, resulting in a 
maximum error of 100%. By contrast, when DBS is active, 
the MSE decreases as the controllers regulate the beta ARV 
closer to the desired target. Among the controllers tested, the 
on-off LIF model achieves an MSE of 11%, significantly 
lower than the 30% observed for the dual LIF model, 
indicating more effective beta oscillation suppression. 

Power consumption is another critical factor, especially 
for implantable systems that rely on limited battery capacity. 
The power consumption for each controller is calculated 
using the formula: 

𝑃𝑃𝑙𝑙𝑙𝑙𝐵𝐵𝑃𝑃 𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶𝑢𝑢𝐶𝐶𝑢𝑢𝐵𝐵𝐶𝐶𝑙𝑙𝐶𝐶 =  
1
𝑇𝑇𝑚𝑚𝑠𝑠𝑚𝑚

 � 𝑍𝑍𝐸𝐸(𝐵𝐵)𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐵𝐵2
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠

0
𝑑𝑑𝐵𝐵, (5) 

where 𝑍𝑍𝐸𝐸  represents electrode impedance (set at 0.5 kΩ), 
𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷 (t) denotes the DBS current, and 𝑇𝑇𝑚𝑚𝑠𝑠𝑚𝑚 is the simulation 

duration. Figure 9 provides a comparative analysis of power 
consumption among the different controllers. The results are 
normalized with respect to the open-loop controller, which 
uses a constant DBS current of 2.5 mA. The open-loop 
controller exhibits the highest power consumption at 100%, 
the highest among all controllers, due to its continuous DBS 
current application. 

 
Figure 9: Comparison of the mean power consumption among 
different CL- DBS controllers. 

By comparison, the on-off LIF controller reduces power 
consumption to 81% of the baseline, while the dual LIF 
controller achieves the most significant improvement, 
consuming just 44% of the power used by the open-loop 
controller. This substantial reduction demonstrates the 
efficiency of the dual LIF model in managing power usage 
without compromising performance. The final evaluation 
metric, suppression efficiency, measures how effectively a 
controller suppresses beta oscillations per unit of power 
consumed. This metric is expressed as a percentage per 
microwatt (%/µW) and is calculated using the formula: 

𝑀𝑀𝑢𝑢𝑢𝑢𝑢𝑢𝑃𝑃𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝐶𝐶 𝑀𝑀𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝐶𝐶𝐵𝐵𝐶𝐶𝐸𝐸𝑑𝑑 

= 100 ×  
1 −  1

𝑇𝑇𝑚𝑚𝑠𝑠𝑚𝑚 ∫
𝑏𝑏𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝑡𝑡) − 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 (𝑡𝑡)

𝑏𝑏𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝑡𝑡)
𝑑𝑑𝐵𝐵𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠

0

𝑃𝑃𝑙𝑙𝑙𝑙𝐵𝐵𝑃𝑃 𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶𝑢𝑢𝐶𝐶𝑢𝑢𝐵𝐵𝐶𝐶𝑙𝑙𝐶𝐶
 (6)

 

where, 𝑏𝑏𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  refers to the beta ARV signal recorded 
during the simulation when DBS is inactive,  𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡  
represents the beta ARV signal recorded with the controller 
in operation. The power consumption is determined by the 
energy utilized by the controller, as specified in Equation (5). 
Excessive beta oscillations are a characteristic feature in the 
basal ganglia of Parkinson's patients [19], contributing to 
their motor symptoms. Various controllers are designed to 
mitigate these oscillations by targeting specific beta levels. A 
controller's effectiveness in managing beta ARV signals 
improves with higher suppression efficiency, reflecting its 
ability to regulate abnormal neural activity more precisely. 

As shown in Figure 10, suppression efficiency is inversely 
proportional to power consumption. The open-loop 
controller, which consumes the most power, achieves the 
lowest suppression efficiency at just 1.8%/µW. The on-off  
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Figure 10: Comparison of suppression efficiency among different CL-
DBS controllers. 

LIF controller demonstrates a significant improvement with 
an efficiency of 6.5%/µW, more than three times higher than 
the open-loop model. However, the dual LIF controller 
outperforms both, achieving the highest suppression 
efficiency of 8.57%/µW, confirming its superior capability to 
balance beta oscillation suppression with minimal power 
usage. 

V. CONCLUSION 
This research introduces a novel neuromorphic approach 

leveraging LIF-based controllers to adaptively modulate CL-
DBS signals based on Parkinson’s Disease symptom severity. 
The on-off LIF and dual LIF controllers presented in this 
study effectively address critical limitations of existing 
systems. Specifically, the proposed controllers reduce power 
consumption by 19% and 56%, respectively, compared to 
conventional models, while enhancing suppression efficiency 
by 4.7% and 6.77%. In addition, recognizing the scarcity of 
Parkinson’s Disease datasets, this study contributes a newly 
curated dataset featuring neural activity from the subthalamic 
nucleus (STN) at beta oscillations. This dataset, 
encompassing key biomarkers for Parkinson’s diagnosis and 
therapy, is publicly available to support further research in 
neuromorphic computing and CL-DBS development. Our 
Parkinson’s Electrophysiological Signal Dataset (PESD) is 
published at https://dandiarchive.org/dandiset 
/001333/0.250304.0304. It consists of raw LFP for both the 
Parkinson’s patients and healthy subjects. Overall, this study 
represents a significant step forward in optimizing energy-
efficient and adaptive CL-DBS systems for Parkinson’s 
treatment.  
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